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Summary

This paper proposes the Goal‐based Neural Variational Agent (GNeVA), an interpretable gen‐
erative model for motion prediction with robust generalizability to out‐of‐distribution cases.
Experiments on motion prediction datasets validate that the fitted model can be interpretable
and generalizable and can achieve comparable performance to state‐of‐the‐art results.

Motivations

a. Modeling the uncertain and multi‐modal driver behaviors for motion prediction.
b. Improve limited model generalizability: Performance degradation facing
Out‐of‐Distribution (OOD) data [1].

c. Improve limited model interpretability: Most state‐of‐the‐art methods propose
end‐to‐end black‐box prediction models.

Problem Formulation

Observation: Observe surroundings in the previous H time steps.
Prediction: Predict a target agent’s future T ‐step trajectory.
Environment Semantics: The set S of objects in the surroundings besides traffic
participants (e.g., road geometry, traffic regulations).
Traffic Participants: The set P of individuals or entities interacting in the current traffic
(e.g., vehicles, cyclists, and pedestrians). A subset of them T are targets to predict.
Objective: Find the optimal model f ∈ F that parameterizes a probabilistic model that
maximizes the likelihood of the target agent’s future states
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Target‐driven Motion Prediction: Reduce the problem into two stages: first sample
from a continuous spatial distribution over plausible future trajectory endpoints (i.e.,
goals), and then complete the intermediate trajectory [2].

Assumptions and Design Ideas

Multimodal Goal Distribution: Assume the goals follow a mixture of Gaussian.
Disentangled Conditional Posteriors for Generalization: Assume the means and
precision matrices follow a Normal‐Wishart conjugate prior distribution to improve
model generalizability.

Posterior of mean is conditioned on the environment semantics and all other participants s.
Posterior of precision is only conditioned on other participants x≤H .
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Variational Structure of the Spatial Distribution of Goals

The endpoint position g ∈ R2 of a target agent’s future trajectory is assumed to follow a Bayesian
mixture of Gaussian distributions. As illustrated in Figure 1, we utilizes an unconditional gener‐
ative process in the following form with learnable prior parameters:
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Figure 1. Likelihood Family
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Figure 2. Variational Family
However, the mean vectors and precision matrices should be conditioned on observed history
information x≤H and s. Therefore, we learn a set of functions to parameterize the mean‐field
variational distributions of µ and Λ and evaluate the distribution of z by

log q(znc) ≈ Eq(µ,Λ)[log p(gn | µc, Λ−1
c , znc)].

Goal-based Neural Variational Agents (GNeVA)

Figure 3. Overview of the GNeVA framework.

Feature Encoding: The traffic scenario is represented as a collection of polylines. We
encode map polylines and participants’ history trajectories by two separate encoders,
resulting in three features: map featuresm, target participant’s history feature e, and
surrounding participants’ history feature o.
Attention Modules Model global interactions and parameterize the posterior
distributions of µ and Λ:

Context Attention uses e as query, concat [m, o] as key and value, and outputs parameters in q(µ).
Interaction Attention uses e as query, concat [e, o] as key and value, and output parameters in q(Λ).

Proxy z‐posterior Network: An additional module trained to estimate the variational
posterior distribution of z using history features:

p̃ (z | x≤H , s) = MLP(concat [x≤H , s]) ≈ q(z)

Sampling and Trajectory Completion: Sample goals from the following posterior
predictive Student’s t‐distribution using Non‐Maximum Suppression
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We use a cascade of MLPs for each sampled goal to complete the intermediate
trajectories with the goal and the context attention module output as inputs.

Benchmark Results

Table 1. Results on INTERACTION validation set.

mADE6 mFDE6

DESIRE [3] 0.32 0.88
MultiPath [4] 0.30 0.99
TNT [2] 0.21 0.67
GNeVA (Ours) 0.25 0.64

Table 2. Results on Argoverse validation set.

mADE6 mFDE6 MR6

TPCN [5] 0.73 1.15 0.11
mmTrans [6] 0.71 1.15 0.11
LaneGCN [7] 0.71 1.08 ‐
GNeVA (Ours) 0.78 1.06 0.10

Generalizability Analysis

Table 3. Model Performance under Cross‐scenario Tests

Train Scenario

Intersection Roundabout Full Dataset
Validate Scenario mADE6 mFDE6 mADE6 mFDE6 mADE6 mFDE6

Intersection 0.56 1.41 0.56 1.39 0.31 0.73
Roundabout 0.61 1.56 0.44 1.08 0.32 0.76

Table 4. Cross Dataset Evaluation Results.

Dataset Argoverse (validate) INTERACTION (validate)

mADE6 mFDE6 MR6 mADE6 mFDE6

Argoverse (train) 0.78 1.06 0.10 0.37 0.91
INTERACTION (train) 0.92 1.34 0.15 0.25 0.64

Visualizations on In-distribution (ID) and OOD Cases

Figure 4. ID case: USA_Intersection_MA Figure 5. OOD case: Intersection_CM

Figure 6. ID case: USA_Roundabout_SR Figure 7. OOD case: Roundabout_RW
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